LoRa Scalability: A Simulation Model Based on Interference Measurements
نویسندگان
چکیده
LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.
منابع مشابه
Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage
The article provides an analysis and reports experimental validation of the various performance metrics of the LoRa low-power wide-area network technology. The LoRa modulation is based on chirp spread spectrum, which enables use of low-quality oscillators in the end device, and to make the synchronization faster and more reliable. Moreover, LoRa technology provides over 150 dB link budget, prov...
متن کاملFLIP: Federation support for Long range low power Internet of things Protocols
There is growing interest in the Internet of Things (IoT) and especially Low-Power Wide Area Networks (LPWAN), which are rapidly being rolled-out globally. Within the LPWAN market, LoRaWAN is considered a leading solution which has achieved significant success. Despite the rapid uptake of LoRaWAN, scalability concerns arising from interference and contention are also growing. While the current ...
متن کاملMitigating Inter-network Interference in LoRa Networks
Long Range (LoRa) is a popular technology used to construct Low-Power Wide-Area Network (LPWAN) networks. Given the popularity of LoRa it is likely that multiple independent LoRa networks are deployed in close proximity. In this situation, neighbouring networks interfere and methods have to be found to combat this interference. In this paper we investigate the use of directional antennae and th...
متن کاملImproving LoRaWAN Performance Using Reservation ALOHA
LoRaWAN is one of the new and updated standards for IoT applications. However, the expected high density of peripheral devices for each gateway, and the absence of an operative synchronization mechanism between the gateway and peripherals, all of which challenges the networks scalability. In this paper, we propose to normalize the communication of LoRaWAN networks using a Reservation-ALOHA (R-A...
متن کاملDynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کامل